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NATIONAL ADV_ISOFKCOMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1281

.> UNSTABLE CAPILLARY WAVES ON SU&ACIE OF &PARATION

OF TWO VISCOUS FLUIDS*

By V. A. Barodin and Y. l?.Dityakin

The study of the breakup of a liquid Jet moving in another mediuri,
for example, a Jet of fuel from a nozzle, shows that for sufficiently
large outflow velocities the jet breaks up into a certain number of
drops of different diameters. At still larger outflow velocities, the
continuous part of the jet practically vanishes and the jet immediately
breaks up at the nozzle into a large number of droplets of varying
diameters (the case of “atomization”). The breakup mechanism in this
case has a very complicated character and is quite irregular,with the
droplets near the nozzle forming a divergent cone.

Rayleigh (reference 1) was the first to make a theoretical study
of the jet and to establish the possibility of droplet formation. The
disturbance of a jet of an ideal fluid flowing into a vacuum and having
a wave length 4.4 tties as large as the diameter of the jet is shown
to “@ow?nore rapidly than other disturbances; eventually, the jet
breaks up into droplets of the same diameter. Rayleigh succeeded in
determining theoretically the drop diameter, the value of which agrees
well with tests on jets issuing with very small velocities. Later,
the viscosity of the jet was also taken into consideration. The
viscosity is found to decrease the rate of amplitude increase of the
disturbances but the ratio of the optimal length of the wave to the
diameter of the jet remains unchanged.

Other authors that studied the conditions of the axial-symmetrical
breakup of a jet of a viscous liquid found that the ratio of the optimal
wave length to the jet diameter was somewhat greater than that computed
by Rayleigh.

In addition to the viscosity, Tbmotika (reference2) took into
account the density and viscosity of the medium surrounding the jet
and obtained good agreement with tests on jets issuing with very small
velocities for which droplets of the same diameter are formed.

..,. *“Neustoichivye~pilliarnye VOMy na l?overkhnostiRazdela Dvukh
Vyazkikh Zhidkostei.” Prikladnaya Matematika i Mekhsmika. Vol. XIII,
no. 3, 1949, pp. 267-276.
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Neither of the aforementioned theories of tinebreakup of a liquid
jet provided a basis for the phenomenon for the case of breakup into
droplets of different diameter, a fact that is explained by tine
idealized conditions of the problem. This idealization consisted either
in neglecting the viscosity of the jet, the density, and viscosity of
the surroundingmedium, or the inertial forces. Such simplifications
were assumed in view of the complicatedmathematical equation (generally
transcendental)that determines the relation between the wavelength
and the increment of the vibration amplitude.

In the present paper, an attempt is made to provide a mathematical
basis for the possibility of the appearance of droplets of different
diameters as a result of the jet breakup on the basis of the considera-
tion of unstable capillary waves on the surface of separation of two
viscous liquids.

For simplification of the solution of the problem, particularly
for obtaining the algebraic characteristic of the equation, the
lengths of the capillary waves on the surface of the liquid jet are
assumed to be so small in comparison with the jet radius that the jet
may be considered infinitely large; study of the stability of the
plane surface of separation of two infinitely extending viscous fluids
can thus be made. This assumption represents a considerable degree of
idealizationbut nevertheless permits a qualitative explanation of
not one but several unstable capillary waves that, in passinq through
the jet, lead to the formation of droplets of differing diameters.

The existence of several unstable capillary waves is demonstrated
lhat can lead to the breakaway of several infinitely long strings of
different dimensions from the partition surface. The problem investi-
gated gives a rough approximation of the disintegration pattern of a
liquid jet in another medium and.does not pretend to explain the com-
plicated mechanism of the limitin~ form of the disintegration of a
jet, namely, atomization. Nevertheless, one of the peculiarities of
atomization, the appearance of a dimension spectrum of the droplets,
begins to appear even for the given idealized consideration of the
stability of the partition surface.

1. Equations of small waves and their solution. - A plane surface
of se-oarationof two iw’initely extending ViSCOUS fluids (fig” 1) iS
considered. The viscosity and-density of the lower fluid are denoted
by P1 and PI, respectively, and of the upper fluid by P2 and P2.

The lower fluid is assumed to move with the velocity v~ and the upper

fluid with the velocity V2, the direction of motion being the same and

the velocities independent of y.
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A study of the character of the equilibrium Or the surface of sep-
aration under the action of the viscous forces and the forces of surface
tiensionthat impart to both liquids small disturbances parallel to,the,.
x-axis is presented. The fluids shall-be”tiocwideredincompressibleand-.
weightless and shall cause certain disturbances to the components of the
motion.

Vx=v+vx

p=l?+p*

It is further assumed that the velocities of the tiposed disturb-
ances and their derivatives up to the third inclusive are small and that
the magnitudes of the second-order smallne=s may be neglected.

From the Navier-Stokas equations, the following equations of the
imposd disturbances are obtained:

avx avx 1 hp*
w+v==-Pax+”Avx 1

where u . p/p is the kinematic viscosity.

The equation of continuity is

ikrx avy _ ~
—.

-&-+ay

By introducing the stream function of the disturbance

(1.1)

(:..2)

(1.3)

and by eliminating the Pressure P* frOm equations (1.1), the idealized
equation is thus obtained in the Helmholtz form
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function of x and

NACA TM 1281

function of the imposed disturbance be a periodic
of the time t:

Y =f(y)ei(m-pt) ().=* (1.:)

where a is the propagated circular frequency of the vibrations (the
wave number), h is the wavelength of the imposed disturbance,
~=~r+i~i is the complex frequency of vibrations in time, ~r

is the real frequency of vibration in time, and 13i is the increment

of the growth of vibration or the decrement of damping.

The character of the wave motion on the surface of separation
after the imparting of disturbances to both surfaces will thus depend
on the si”~ of the imaginary part of the frequency pi. If pi is

positive, there will be an increase in the wave amplitude with time;
if pi is negative, there will be a damping of the wave amplitude;

finally, if ~r = O, there will be an aperiodic increase (pi > O)

or a
sion

damping (Pi < 0) of the wave amplitude. By substituting expres-
(1.5) in equation (1.4), the following equation is obtained:

vfIv - (2a.2v-

The problem of
of equations of the

By setting f“
order is obtained.

ip) f“ - (i@2 - ua4) f - iVu (f” - a2f) = O (1.6)

the characteristicvalues of a homogeneous system
fourth order will be considered.

- ~2f = q, a system of equations of the second

Hereinafter, t’hefollowing notations are introduced:

-=., m=mz

(1.7)

(1.8) ‘

The solution of the first of equations (1.7) has the form

W = Cle‘rely + C2e - imIy (1.9)

By substituting expression (1.9) in the second of equations (1.7),
a non-homogeneous equation is obtained for which the solution is

— —
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~iin]y ~-im~y .
f’. - C1-2 C2 + eay C3 + e-uy C4

m12 + a2 ml + u2

The stream function for the lower and upper
equation (1.5) w3.11be

liquids according

eWc +e-ayC
3

)
4

( e~m2yi(ax-13t) - e-im2y
lJ2=e C5-2 C6+e

ay
C7+e

)

-aY C8
2rn2 + a2 m2 + u2

5

(1.10)

to

(1.11)

(1.12)

The arbitrary constants Cf must be determined from the conditions

on the surface of separation and at infinity.

2. Boundary conditions. - The boundary conditions of the problem
will “Deas follows:

1. At infinity (y = ~~), finite solutions must be maintained for
q.fland Y2. Hence, the arbitrary constants of the te~s with Positive

exponents for V1 and with ne~ative exponents for V z must be equated

to zero: q=c3=c6=c8=o. Thus, equations (1.10) and (1.11) will

have the form -“

(
-imly

~1 . ei(ox-~t) - e C2+e
-ay

2ml + a2

)1

‘4

(
.

~2 . ei(ax-pt) - ‘1m2y ay

m22 )J
+a2c5+e ‘7

(2.1)

2. On the surface of separation, there must be no slip, that fsY

() ()‘xl = ‘X2 Y=oy=o

()
=

‘Y~ y.o ()‘Y2 y=o
}

or
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1(%),=0=(3,=0 ~
(%’),=0‘(9,=0

3. The tangential stresses on the surface of separation are
continuous

I+w)Y=O = i-L2@V2?y=o

4. The difference between the normal stresses py~ and pyz

on the surface of separation is equal to the pressure brought about
the surface tension; that is,

( ~vyl)( ) ~2h
“gi - Py2 = - pl + Zpl — - _p2+2p2 @=-T=
-Y dy Oy &

(2.2)

(2.3)

by

(2.4)

where T is the capillary constant of one liquid relative to the other
and h is the rise in the surface of separation at the point x.

By using equations (2.1), the boundary conditions (2.2) are obtained
in the form

iml im2

m.l2
+m2c2-W4+2+a2 C5-&7=0

mz

(2.5)
C2 C5+C4+

J

-C.7=0
mlz + ~z 1# + u?

condition (2.3) is obtained in the form

.

similarly, the boundary
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The pressures P1 and P2 are computed from equations (1.1)

and (2.1). Thus
. .,..

““”[(’”i(ax-Pt)ae-im~yV1U2 ivlu
P1 = Ple

)

‘~ + mlUl—-
2 —+— C2 +

ml + a.2 ‘1 ml ml

( )1P + iula.2- Vlu - iV1a.2e-aY C4 (2.7)

d

[(
2

i(ax-13t) aeim2y ‘2m iV2a
P2 = P2e —- —

2
) 1+Q+m2v2 C5 + (D - V2a) e“y C7

m2 + az ‘2 %2%2

The rise of a point
and t.

where Fi is the maximai

The velocity of the

on the surface is a periodic function of x

rise of a point on the surface

raised point on the surface of

(2.8)

of separation.”

separation is

(2.9)

After differentiating expressions (2.1) and (2.8) and by substi-
tuting in expression (2.9), the following equation is obtained:

(2.10)

By substituting equation (2.10) in (2.9) and by differentiating
equation (2.9),

(2.11)

.
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By computing the derivatives ~vyl/~y and ~vy2/by and,substi-

tuting them simultaneouslywith expressions (2.7) and (2.11) in (2.4),
the following boundary condition is obtained:

a

[

-~1a2 ~ iplV1a - iPPl TU.2—— 1+ml~l+av-2ml + a2 ml
1

(Plo - plV1a.- i2~1a2 + T

)

CA + 2U

.[

p2a2 - ip2V2a + i13p2

aVl - p +
m2 + a2 m2

1s~vz C5 + (P213- Pzvp+ i2w2a2) C7 = O

The following nondimensional parameters are then introduced:

(2.12)

.

(2.13)
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where c = B/cc

Equations
,- ,,.. .

is the complex wave velocity.

(1.8) can then berepresgnted__in the forms

ml .a J(iZ- R1) - 1

Equations

m2 . a~i(~- R2) -1

(2.5), (2.6), and (2.12) are represented innondimen-
sional-parameters. @he following notations are first introduced:

i

[~

2
al* = ~1 Z-R1 +

i(Z-Rl) - 1

bl* = a.2pl
(

N

)
Z-Rl-2i + —. R1-Z

2(i - 2R2 + 2AZ)
c1*

i a3a3* . - A_ = —
~2 Z-Rl ~2

a2~1b1

= ~2u2cl

dl* = ~2a2 (ZA-R2 + 2i) = p2a.2dl

i(ZA-R2) - 1 C2
C2* . A

a ZA-R2 = z

9“

(2.14)

where al J az~ as) blj CD C2J c,3~ and dl are likewise nondimen-

sional magnitudes.
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The following system of equations is then obtained for the con-
stants C2Z C4~ C5, and C7:

This system

(2.15)

a1*C2 - bl*C4 + C1*C5 + dl*C7 = O

a2+C2 - cu24+c2*C5-a C7=0

-a3’c2 + C* + C3*C5 - CT = o

K C2 c~ =0
1

of homogeneous equations has solutions different
from zero if its determinant is equal to zero. By setting up the
determinant and expanding

2K(al + cl) + (dl - Kbl)(a2 +Kc2) + (ml + d1)(Kc3 - a3) = O

By solving this equation for Z, the following wave
the 18th degree with complex coefficients is obtained:

r~az18+ (r17 + ‘s17
) Z17+ ... + (rl+isl) Z+ (r.

equation of

+ iso) = O

(2.16)

The real and imaginary parts of the coefficients depend on the
five nondimensional parameters: RI} R2? A, N, and K.

3. Investigation of roots of characteristic equation. - The
increase in oscillation, that is, the I.ossof stability of the sur-
face of separation, arises from those waves for which the imaginary
part of the frequency is positive (pi > O). Hence, the investiga-

tion of the roots of equation (2.16) should determine those rsmges
of the parameter N or the wave number u in which the complex
roots of the equation lie in the upper half-plane.

By the Rayleigh hypothesis, the further development of an
unstable d.eformatlon,that is, the form and dimensions of the parts
breaking away, is determined by the critical (or optimal) disturb-
ances. The critical disturbances may be defined as those that
develop more rapidly than the others or that correspond to the
maximum increment of the ~gowth Pi. This principle of deter-
mining the character oi’the unstable deformations “DYthe character
of the maximum unstable dis-turbancehas been experimentally
confirmed by a number of investigators (reference5).
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In the case considered, the growth in the amplitudes of the
oscillationswill lead to breakaway of’infinitely long strings

.,.from the surface of separation; similar to the formation and
breakaway of wave crests. The separation will take place for such
values of a or wavelen@.hs ~ for which Pi has the maximal

value.

If a spectrum of small-period disturbances that can be developed
into a Fourier series can be assumed to be imposed on both liqulds,
the harmonics with the wavelengths equal to the wavelengths of
the maximal unstable disturbances bring about a separation of
infinitely long strin~s from the partition surface. Because the
cha.ra,cteristicdimension (for example, the diameter of the transverse
strj.ng)is connected wi’~hthe length of maximal unstable disturbance,
strings of different dimensions will break away from the surface of
separation. In fi~re 2, the scheme of formation of such strings
:i?cwthree successive instants of time is shown.

Investigation of the roots of the stiplest particular case of
equation (2.16) is presented.

Let both fluids be stationary and their kinetic viscosities
the same. In this case, Vl=V2=0,~l=V2,ml =m2,A=l,

I?l= R2 = 0, and equa,tion(2.16) goes over into an equation of the

Eth degree whose coefficientsdepend only on the two parameters
K and N:

AOZ8 + (Al + iBl)Z7 + (A2 + iB2)Z6 + (A3 + iB3)Z5 + (A4 + iB4)Z4 +

(A5 + iB5)Z3 + (A6 + iB6)Z2 + (A7 + iB7)Z + A8 = O (:,1)
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where

Ao. - (1 - K)2

A2=2K(K -l) N- K4+2K3- 4K2+GK +13

Al = - 2K (K - 1)2

A3 = 4K2 (K - 1) N - 2K (3K2 + 13)

P-7= 2K3N2

A4. - K21!J2+ 2 (1? - K3 + 3K2 + 5K) N - 12K3 + 26K2 - 10K - 9

A5=- 2K3N2 + 1.2K31i- 8K3 - 8K2

A8.- K2 (1 + 2K) N2

A6 = (1 - K2) K2N2 + (4K4 - 10K3 - ~42 - 6K) N - 8K3 + 12K2 -8K+4

B1=2(K2+2K-3)

B3 = 3K4 - 14K3 + 13K2 + lWK + 13 - em

B2 =4K(K- 1)2

B4,= 6K3 - 4K2 - 20K - 2K3N

B6 = 4K2 (1 - K) N

[2K2N2 + 2K (1 +K) (1 -!-K- K2) + 8K3 + 4K2 + 4K]N +B5=-

4(K-l- K2) (1 +K - K2) + 4K4 - 2@&3 - 4(K - ~ - K2)2

B7 . [(K2 l+K)2- 2K~N2 + [41# + 4K (1 +K) (K - 1 - K2)] N

(3.2)



i

,.
NACA TM 1281

The characteristic equation (3.1) is a polynomial whose
coefficientsdepend nonlinearly on the two parameters K and N.

,> Each pair .ofvalues of the.parag@er_s K and N or each point
of the.pla.ne KN correspond to the complete~y”definedpolynomial”
(3.1), that is, completely determined values ~f the eight roots
of the polynomial. In the plane KN, it is evidently possible to
find a curve, ,eachpoint of which corresponds to the polynomial
(3.1), that has at least one root located on the real axis so that
only in crossing this curve is a crossin~ of the roots through the
real axis possible. This curve breaks LIP the plane KN into
regions, the points of which each correspond to polynomials (3.1),
that have the same number of roots w“ithpositive imaginary part.

These curves are constructed by making use of the method of
Y. I. Neimark (reference4) that permits a breakup of the plane
of the parameters for the roots of the polynomial lying in the left
or rtght half-plane.

The substitution Z = -it is made. The upper half-plane of
the roots of equation (3.1) is transformed into the left half-plane
of the roots of the equation

- AO~ + i(A1 + iB1)L7 + (A2 + iB2)~6 - i(A3 + iB3)~5- (A4 + iB4)L4 +

i(A5 + iB5)~3 + (A6 + iB6)~2 - (A7 + iB7)~ + A8 = O

(3.3)

By substitt.lting~= i~/q in the preceding equation and multi-
plying the result by r18,equation (3.5) is reduced to the form.

F(f,TI) + iG(~,q) = o (3.4)

(3.5)

13
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If R2n is the space of

D(k,n - k) is the “manifoldof

the left and n
complex sphere,

- k roots to

NACA TM 1281

complex polynomials of degree n and

polynomials R2n having k roots to

the right of the imaginary axis of the
then by setting up the following table:

{

AO Al A2 A3

o B1 B2 B3

and by making the transformation

{

AO +~l.Bl Al + ~lB2

~ B1

}

A4 A5 A6 A7 Aa

B4 B5 B6 B7 B8
(3.6)

A2 + ‘1B3

}

~3 +A~B4. ..A8

B2 B3 ...C
(3.7)

table (3.7) is found to correspond to a polynomial of the same type
witkirespect to the distribution of the roots relative to the imaginary
axis, as in equation (3.4).

JRromtable (3.6), an inequalityis obtained that defines the
reSion in the plane KN correspondingto the presence of the first
root of equation (3.1) in the upper half-plane:

A@~< o

By setting Al = - Ao/B1 in table

[

(AIBl - AoB2)/Bl (A2Bl - J4$3)/B1

‘1 B2

(3.8)

(3.7)

1(A3B1.-AOB4)/Bl ...A7A8

B3 ...B70 J
(3.9)

Because AIBi - A@2 = - 16K(K - 1)3< O for K>l, by multi-

plying the elements of the first rows of (3.9) by B12/(AIB1 - A@2)

and changing signs in the second row

[ }

B1 D1 B2 D3 D4 D5 D6 D7
(3.1.0)

-Bl -Bz -B3 -B4 -B5 -B6 -B7 .0
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where

B1(A3B1- A@4)

“AIB1- ‘s2

B1(Q1 - A@5)
AIB1 - AoB~

B1(A5B1 - A@6)
AIB1 - A@2

B1(A+l - J&7)
AIBl - A@2

B~A8

‘lBl
- A@2 =

= D1

= D2

= D3

= D4

= D5

D6

D7

15

.—..

(3.11)

The first row of table (3.10) is left unchanged but to the
second row is added the first row. Thus

{

Bi Dl D2 D3 D4 D5

}

D6 D7

o Dl -B2 D2-B3 D3-B4 D4-B5 D5-B6 D6-B7 C7

(3.12)

From the preceding calculations,an inequality is obtained that
defines the region in the plane KIT that corresponds to the presence
of the second root of equation (3.1) in the upper half-plane

B1(D1 -B2)<0 (3.13)
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By carrying out a

{

Ill+ A2(D1 - B2)

o
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transformation, similar to (3.7) of table (3.12),

1D1 + ~(D2”-B3) D2 +A2(D3 -B4)...D7
(3.14)

‘1 - ‘2 ‘2 -B3 ““”C7

By set-tinS A2 = ‘B1/(D1 -B2) and substituting in (3.14)

[

D1(D1 - B2) - Bl(D2 - B3) D2(Dl - B2) - B1(D3 - B4)

Dl - B2 Dl - B2
D1 - B2 D2 - B3

1

(3.15)
D3(D1 - B2) - B1(D4 - B5)

D1 - B2 ...

D3 -B4 ....

Because D1(D1 - B2) - B1 (D2 - B3)> O for K>l, by multi-

plying the elements of the first row of (3.15) by (Dl - B2)2/

[(D1 D1 - B2) -B1(D2 -B3)l

[

[(D2 Dl - B2) - B~(D3 - B4)](D1 - B2)
D1 - B2

1
● ..

D1(Dl - B2) - B1(D2 - B3)

1Dl - B2

The elements of
of the second row of

J (3.16)
D2 - B3 ...

the first row are subtracted from the elements
table (3.16).

{

D1 - B2 [(D2 (D~-B2) -B]jD3-B4](D~-B2) ...

[((D2 -B3) - ‘2D1 -
B2) - B1(D3 - B4fl(D1 -B2)

o
D1(D1 - B2) - B1(D2 - B3) ““01

(3.17)

From the preceding table, an inequality is obtained that defines
the region in the plane of the parameters KN that corresponds to the

presence of the third root of equation (3.1) in the upper half-plane.

[

[(D2 D1 - B2) - B1(D3 - dB4jl(Dl -B2) <o
(Dl -B2) (D2 -B3) -

D1(D1 - B2) - B1(D2 - B3

(3.18)
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Shnilar conditions can be obtained for all the remaining roots
of equation (3.1). This investigationhas been limited.to the three
conditions that are sufficient for proving the existence of several
unstable waves. —,.,.

By replacing inequalities (3.8), (3.13), and (3.18) by equations,
the equations of the curves determining the breakup of the KN plane
into re ions are obtained. The most interesting case of large

rK . pl ~2>1 is considered. From inequalities (3.8); (3.13),

and (3.18) and by considering equations (3.2) and (3.11) and neg-
lecting small powers of K, the following equations are obtained:

where

2(K - 1)3(K+ 3) = O

e#3 + e1N2 + e2N +e3=0

4(K2 - 1)(K + 3)N +K(K - 1)(K3 + 17K2 - 96K

e. . 128(F# - K3 - 23K2 - 39K - 18)

el = 592K(K5 + 8.4# + 3.18# - 96K2 - 20.3K

‘2 = 9K2(K6 + 8.4K5 - 97.3K4 - 2045K3 + 1700K2 +

+ 0.98)

390K + 363)

e3 . 24K5(K5 + 12.3K4 + 306K3 - 4100K2 + 12,300K - 7000)

By plotting the curves (3.19) in the KIi plane and separating
by hatched lines the regions correspondingto the signs of the
inequalities (3.8), (3.13), and (3.18), the diagram shown in
fQure 3 is obtained. This diagram shows that for K>O and N>O
a region of values of K and N exists that corresponds to the
presence of three roots with positive haglnary part, that is,
of three unstable waves on the surface of separation.

The division of the KN plane for the remaining roots could
establish regions with a still greater number of roots with posi-
tive imagina;y part. The
however, the existence of
of a maximum @i or Cij

given–incompletediagram already shows,
several unstable waves. In the presence
several infinitely long strings will

—
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break away from the surface of separation, the cross-sectional
dimensions of which will depend on the wavelength of the critical
disturbance.

Translated by S. Reiss,
National Advisory Committee
for Aeronautics.

REFERENCES

1. Rayleigh: The Theory of Sound. Dover

2. Tomotika, S.: On the Instability of a
Viscous Liquid Surrounded by Another
Roy. Sot. London, vol. CL, no. A870,
pp. 322-337.

Pub., 2d cd., 1245.

Cylindrical Thread of a
Viscous Fluid. Proc.
ser. A, June 1935,

3. Petrov, G. I.: On the Stability of Turbulent Layers. Rep.
No. 304, CAHI, 1937.

4-. Neimark, Y. I.: On the Probiem of the Distribution of the Roots
of Polynomials. DAN, T. 58, No. 3, 1947.



NACA TM 1281

———

19

Figure 1.

Figure 2.
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